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Abstract. A clock reaction is a chemical reaction which gives rise to an initial induction period before a significant
concentration of one of the chemical species involved is produced. We study four closely related isothermal model
reaction schemes which can exhibit clock reaction behaviour in a well-stirred situation. These reaction schemes
represent a combination of quadratic or cubic autocatalysis with linear or quadratic inhibition.

1. Introduction

During a chemical clock reaction the concentration of one of the chemical species involved
(the clock chemical) has the following distinguishing features:

(a) After the initial mixing of the reactants there is an induction period during which the
concentration of the clock chemical is low.

(b) At the end of the induction period the concentration of the clock chemical increases,
often very rapidly.

In part I, [1], we described two simple, isothermal reaction mechanisms that can lead to
clock reaction behaviour. We also gave canonical examples of each in a closed, well-stirred
reaction vessel.

(i) Induction: The rate of production of the clock chemical is small when its concentration
is small. The concentration of the clock chemical is small initially. For example, cubic
autocatalysis:

P + 2B-- 3B, rate kpb2 .

Here, P is a precursor chemical and B is the clock chemical with concentrations p and b,
respectively. k is a reaction rate constant. Examples of solution phase reactions which are
thought to be well modelled by cubic autocatalysis include the iodate-arsenous acid reaction
[2], and the iodine-bisulphate clock reaction [3].

(ii) Inhibition: The clock chemical is supplied to the closed system by the decay of a
precursor chemical. An inhibitor chemical reacts with the clock chemical, limiting its
concentration. The concentration of the clock chemical increases once the inhibitor chemical
is consumed. For example:

P--> B, rate kop,

B + C- D, rate kbc.
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Here, C is the inhibitor chemical with concentration c and D is an inert product. k0 and k,
are reaction rate constants. Examples of reactions which are thought to be well modelled by
this mechanism are the photosynthesis of hydrogen chloride inhibited by ammonia and the
photopolymerization of vinyl acetate inhibited by benzoquinone [4]. Further examples of
clock reactions, for which the underlying mechanism is less clear, are the formaldehyde clock
[5], the hydration of carbon dioxide [6] and the oxidation of luminol by hydrogen peroxide
[67].

We also studied the reaction scheme:

P+ 2A--->B, rate kpa2 ,

B + C--->3A, rate kbc,

where A is an intermediate chemical species with concentration, a. This is a combination of
the previous two reaction schemes and, overall, is cubic autocatalytic (P + 2A ---> 3A). As we
described in [1], this scheme is closely related to a two-step model for the iodate-arsenous
acid and iodine-bisulphate clock reactions.

The other obvious combination of our two canonical schemes is:

P--- A , rate kop ,

A + 2B---> 3B, rate kab2 ,

B + C--> D, rate k 2bc .

This provides a model for a modified iodate-arsenous acid reaction where iodate ions,
A = IO, are supplied to the system and an inhibitor chemical, C, reacts with iodine ions,
B = I-. A similar reaction scheme which has received some attention recently is:

P---> A, rate kop ,

A + 2B--> 3B , rate kab2 ,

B--> D, rate k 2b .

Here the species B decays spontaneously rather than in combination with an inhibitor. It can
be shown that this scheme exhibits oscillatory behaviour for certain ranges of parameter
values [8]. In this paper we study four members of the class of reaction schemes,

P---> A, rate kop, (la)

A + nB--> (n + 1)B, rate kab , (lb)

mB + C--> D, rate k2bm c, (Ic)

with n = 1,2 and m = 1, 2. Schemes based around a quadratic or cubic autocatalytic step
have received much recent attention (for example [9], [10]). Particular attention has been
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paid to the development of sustained oscillations, travelling waves, multistability and routes

to chaos. However, the possibility of clock reaction behaviour has not been examined, and is

not at all clear from the kinetics (la, b, c) alone. It is this which we discuss in the present

paper.
We note in passing that clock reaction behaviour has been much studied and is well

understood in strongly exothermic reactions. In such reactions a clock reaction is equivalent

to a long induction period followed by an explosion. Explosions can be purely thermal [11],

or may be driven by branched chain propagation via a temperature dependent step similar to

(lb) above [12]. In [11] and [12] the exothermic reaction schemes of interest are analysed
using the method of matched asymptotic expansions - the technique which we use below to
study the behaviour of reaction scheme (1).

2. Asymptotic analysis of the reaction scheme (la-c)

The reaction rate equations for the concentrations p, a, b and c, are,

dp da
d = -k , d = k p - kab, (2a, b)
dt dt

db dc
-t = klab - mkb c = -k2 bm c . (2c, d)
dt 1( dt

The concentration of the inert product, D, is determined by conservation of matter as,
d = c - c, and we impose the initial conditions,

P =Po , a=O, b=bo, c=co, d=O att=O. (2e)

Equation (2a) can be integrated immediately to give,

p = e- . (3a)

By integrating the appropriate linear combination of equations (2b, c, d) we find that,

a + b - mc = po(l - e-kot) + bo - mco . (3b)

We then obtain the rate equations in terms of a and b above, by substituting from (3a, b)

into (2b, c), as

da
= kopo e-k' - klab , (4a)

dt

db
dt = klab" - k2bm (a + b - po (l - eko') - bo + mco) . (4b)

It is now convenient to define dimensionless variables by,

a = a/bo , p = bbo, y = c/b o , = kbot . (5)

In terms of the variables (5) equations (3b), (4a, b) and initial conditions (2e) become,
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my = a + f- PO(1 - e )+ mA -1, (6)

d = EP e - af," (7a)

df 
d- = af" - K3 m(a + - P0 (1 - e) + mA - 1) (7b)

a(O) =O, P(O) = 1, y(O) = A, (7c)

where the dimensionless parameters PO, A, and K are defined by,

Po -o k k2boPO= Po= = ' = , K= , ' (8)
bk bo klbo ki

The parameters P0 and A are the dimensionless initial concentrations of P and C, respective-
ly. The parameters and K are measures of the reaction rate of steps (la) and (c)
respectively, relative to the rate of the autocatalytic step (lb). We now make the further
assumptions that the reactant P is initially in large excess over the clock chemical, B, and
that the reaction step (la) typically proceeds much more slowly than the step (lb). This is
known as the pool chemical approximation [13]. Mathematically this assumption leads us to
consider the situation in which,

£<1, Po > 1 with I = Po = 0 (1). (9)

If, instead of the decay step (la), P---> A, we had specified that the species A is supplied to
the system at a constant rate, kin, we would have obtained the same equations, (12) at
leading order, with Ax = klkb o +'. This is the way that the pool chemical approximation is
often invoked when a chemical species is produced at an almost constant rate. We note the
effect of the slow consumption of P in §7.

We now examine the solution of the initial value problem (7) under conditions (9). Firstly,
we expand a, fi and y as,

a(r; , K) = %a1(.; K) + o(1), ri(T; E, K) = 1,(7; K) + o(1),

(10a, b, c)
y(T; , K) = y'(r; K) + o(1), as -->0, with r = 0(1).

After substituting these expansions into equations (6) and (7a, b) we obtain the leading
order problem,

my, = a, + f3, - .ir + mA -1, (11)

da df n
da - I d' aaI 1 -Kfm(a(j + P1 - . + mA - 1), (12a, b)

a,(o) = O, ,() = 1, y(0) = A . (12c)

Equations (11) and (12a, b) admit exact solutions of the form,
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a = -, 3, = O, = + (- ), (13a)

where c is a constant, and also solutions of the asymptotic form,

1--->0, a, + 3, - rT - (mA -1), a, 1 / IA-lrn as ---> . (13b)

We show below that the solution of the initial value problem (12) is asymptotic to a solution
of the form (13a) or (13b) as T-> , depending upon the values of the parameters K, A and
Ax, and the reaction rate orders n and m. If the long time asymptotic solution is of the form
(13a), the reaction step (c) inhibits the clock chemical, B, so strongly that the autocatalytic
step (lb) never proceeds rapidly enough to produce a significant concentration of B.
However, if the long time asymptotic solution has the form (13b), the inhibitor, C, is
completely consumed and the reactant, A, produced by the decay of the precursor, P, is
rapidly converted to the clock chemical, B, via step (lb). In each case, one of the
concentrations a, or /, becomes unbounded as Tr--> . This indicates that the expansions (10)
develop a nonuniformity as ---> and the form of the full equations (7) shows that this
occurs when = O(E-1 ) as --> 0. We can regard the expansions (10) as the inner solution
and now construct an outer solution valid when = O(E-l) as E---> 0 in each of the two cases
described by (13a, b).

(a) a, - T5, - 0O, %,- A+ ( as T- o

We show below that, when this case arises, ,3 decays exponentially as T-- , which leads us
to assume that 3, = o(eP ) Vp >0 as E --->0. When = O(E- ), a = O(e- 1 ) and appropriate
scaled variables for the outer solution are therefore, = E, a = a, = o(en) Vn > 0,
y = 0(1), as --->0. In terms of these variables, equation (7a) becomes, up to terms
exponentially small in ,

-= e , (14a)
di

which is to be solved subject to matching with the inner expansion (10) as ---> 0. We expand
a as,

ca(T: ; K) = aOut,0(; K) + aOutl(T, K) + o() , (14b)

as --> 0, with T = 0(1), and substitute into equation (14a). The resulting equations for aouto
and aout, are readily solved subject to matching with the inner solution (13a) as -> 0, to
give,

a(T; ; K) = (1 -e - ) - + o(E) , as e-->0, with = 0(1). (14c)

Thus a ->- cj and hence a---> P, - , P -->0, y-- A + (- 1) /m, as ---> cc, which corre-
sponds to an equilibrium state of the full equations (7a, b) following the total consumption of
the precursor, P. This completes the solution of the initial value problem (7) for 0 < E < 1, in
this case.
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(b) a, - 1 /In 1T, PI 3- , y-- 0O, as r--->

Equations (6) and (7a, b) indicate that y decays exponentially as r- co in this case, which
leads us to assume that y, = o(EP) Vp >0 as -->0. When r= O(- 1 ), a, = O(en), /3 =

O(E-') and appropriate scaled variables for the outer solution are, = Er, = E-na, / = E/,
y = o(EP) Vp > 0 as e- 0. In terms of these variables, equations (7a, b) become,

,+ d _
E d = g e-T - a n (15a)

em d- m+lon _-- KEn+lamn + ( -e), (15b)

which are to be solved subject to matching with the inner expansion (10) as 0--->. We
expand and P/ as,

a(,; E, K) = aoutO(; K) + Eaout,(T, K) + O(E),
(15c)

/3(5; E, K) = 3out0(; K) + E/30 utl(7, K) + o(E), as e-O0, with = 0(1),

and substitute into equations (15a, b). We can easily solve the resulting equations for ioutO,

aoutl, outO and /3out to obtain, after matching with the inner solution (13b) as I- 0,

a-(T, E, K) e e+ n(mA 1) e + 
l( e ) (1 - e '+o(e)

(16)

3(T; E, K)= (1-e - ) - e (m kA - 1 ) + (E ) , as E-O, with 7= 0(1).

Thus a-->0, /3-*>- E(mA-1), and hence a->0, /3-P 0 -(mA-1), y- 0 as --,o
which corresponds to an equilibrium state of the full equations (7a, b) following the total
consumption of the precursor, P. This completes the asymptotic solution of the initial value
problem (7) for 0 < e 1 in this case.

We now present a detailed analysis of the inner problem (12) and show that the inner
solution can display clock behaviour via a rapid transition from a solution of the form (13a)
to a solution of the form (13b). In terms of the reaction schemes (1) this represents a
sudden, rapid increase in the concentration of the clock chemical, B. In terms of the real
clock reactions described in §1, such a sudden rapid increase in the concentration of the
clock chemical often results in a sudden, dramatic colour change in solution phase reactions.
As a consequence such reactions are often used as demonstrations for undergraduates ([14],
[15]). Some clock reactions even produce a flash of light ([17]).

3. Quadratic autocatalysis with linear inhibition, n = m = 1

In this case, the reaction scheme (1) is, in the inner limit,

P -- A, rate , (17a)
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A + B--->2B, rate al3,, (17b)

B + C-- D, rate K3,y, (17c)

where K = k 21k,, = kopo/klb2, and we require a solution of the initial value problem,

y = a, + 3l - r + A-1 , (18a)

da% d3,
dr = (ax , , Ia - K3PI(a + - + A - 1), (18b, c)

a(O ) = 0, /3,(0)=1, ,(0O)= A. (18d)

In order to proceed we make the further assumptions that A > 1 and K > 1. The condition
A > 1 requires that the initial concentration of the inhibitor, C, is large enough to consume
all of the clock chemical, B, present initially, whilst for K > 1 the reaction step (17c) typically
proceeds much more rapidly than the autocatalytic step (17b). At first glance, we might
expect that these conditions would lead to complete inhibition of the production of the clock
chemical, B, so that the solution is asymptotic to (13a) as T---> . However, by integrating
equation (18c), making use of (18a) and initial condition (18d), we obtain, /3, = exp{(( a) -

K(y.))r}, where,

(X) = f | X(s) ds, (19)

denotes the time-averaged value of X(s) over the interval 0 - s <- T. In addition, we expect
for K > 1 and A > 1 that, after a short initial transient period, the solution lies close to (13a)
so that (a,) p- 2,U, (y) -- (A - 1), and hence, P - exp[{It - K(A - 1)}T], as K--> ,
with = 0(1). This suggests that , is exponentially small until approaches Tr = K 0o, with
, - 2( A - 1) , as K---> o, after which that /3, increases rapidly.
We now construct an asymptotic solution which confirms that, after a short initial transient

period, /3, is exponentially small until approaches To, when the solution undergoes a rapid
transition and takes on the asymptotic form (13b). After noting that the concentration /3, is
initially of 0(1), an examination of equations (18b, c) shows that appropriate scaled
variables are, = Ka,, = Kr, 13,, in terms of which equations (18b, c) and initial conditions
(18d) become,

d = ,-K 1 'ea&3,, (20a)

d = -3,((3, + A - 1) - K-1/3(a - Ai) + K-2aP, , (20b)

(0) = 3,(0) = 1. (20c)

We label the region where i = 0(1) as region I and expand and /, as,

- E Kan, P, -A K -n ,s K-m, with i = 0(1) . (20d)
n=O n=O
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After substituting expansions (20d) into equations (20a, b) and solving in turn the resulting
equations for i, ci , r ,3, p, and 2 we obtain,

A-i
(o = , o B = A e(A - ' )

, - 1 (21a, b)

with the expressions for &il, &2, B31, 32 omitted for brevity (see [16]). We can now use the
solution (21) to obtain the behaviour of a and , for > 1 as,

{ i ye- (A - 1) -{2 a e (A- );

a6 -g + K_' ·al + A I + K -2 a 2 + A "' (22a)

(A-) e + __,__-i2 a,(A- 1) + b,(A e- 1) l)
A ' 2A A A

as K-- oo, (22b)

where the constants a, a2 and b are given in [16]. In addition, it is easy to show by
induction that 3 - 0 and , - an via exponentially small terms as T-- Y, where a are fixed
constants for n = 1, 2,....

Approximations (22a, b) become non-uniform as Ti- , in particular when =O(K),
a = O(K) and log 3, = O(K). To obtain uniform asymptotic expansions for a, and /3, when

= O(K) we introduce region II in which the appropriate variables are r= K-IT, a,
B, = e-K+(T), where > 0 in region II. In terms of these new variables, equations (18b, c)
become,

da, -KO d
dr = -a -e I, o l T + -1-K + (23a, b)

which are to be solved subject to matching with expansions (20d) in region I as --> 0. The
solution of equation (23a) which matches with the solution in region I to all algebraic orders
of K as r--> 0 is,

al- gI K/ "a + e K, (24a)
n=l

where ae = O(e-K) as K--* o with = 0(1). We can now determine the solution of
equation (23b) which matches with the solution in region I to all algebraic orders of K as
T- 0 as,

(A - 1) - K-1( T2 + log{(A - 1)/A}) + K -2 a,

+ A K-(n+2)((an+l - an) - b) + e , (24b)
n=1

where Be = O(e- K(A-1)T) as Koy with T = 0(1), and the constants b,, n = 1, 2, ... , are
determined by the form of the solutions 3,, n = 2, 3, . . ., in region I. It is also of interest to
determine the behaviour of ae, the exponentially small correction to the asymptotic form of
a,. By substituting from (24a) into equation (23a) we obtain the equation for a, as,

dae _ /z(A- 1) e K(Al-)r exp( 2.T 
2)(1 + O(K-)), (25a)
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which is to be solved subject to matching with expansion (20d) in region I as T--> 0. After an
integration of (25a), we can estimate ae using Laplace's method which, on matching to
region I, leads to,

ae = K - e- K ) exp(½ -2 )(1 + O(K-)), as K--> with T = 0(1). (25b)

Finally, from (24) and (25) we have,

oa -1 1 A K-(+l)a, + K l e ( ) exp( 21
2

T)(1 + O(K- )), (26a)
n=l A

3 (A2 A 1) e-K(A-1)7 exp[1 2-K K1ai K(n+1)((an+I - an)T- bn)]

x {1 + O(e-K(A-I)T)) , (26b)

as K- oO with = 0(1).
These expansions become non-uniform as -- > K 0o, where,

2(A- 1) 2a1K - 2 2(a 2 -al)K 3
o =-- + + O(K - 4) as K---o. (27)

In order to obtain uniform asymptotic expansions for a, and /,3 as r---> K we introduce
region III, where appropriate scaled variables are, a, = 2(A - 1)K + A, ,3 = B, = KF0 +
K-tT. In terms of these variables equations (18b, c) become,

dA
dT = -2(A - 1)B + K-'(L - AB), (28a)

dB
dT (A - 1 - A - B)B + K'(T + A + 2a)B+ K 22(a2 - a,)B+ O(K 3 B), (28b)

which are to be solved subject to matching with the expansion (26) in region II as T-- -- .

We now expand A and B as,

A = Ao + K-1A + O(K-2 ), B = Bo + K-'B1 + O(K - 2 ) as K-->o, (28c)

with T= 0(1). On substituting these expansions into equations (28a, b) we obtain, at
leading order,

dA dB0
dT -2(A- 1)B 0, dT (A- 1- A - B)B, (29a,b)

which are to be solved subject to the matching conditions,

2(A - 1) e(A - B) r (A- 1) e(A - 1 )T
AO- A ' BA, A as T-oo. (29c)

This problem is readily solved in implicit form, and the details are given in [16], in which it is
shown that Ao(T), B(T) remain bounded for all finite T. At O(K-') the problem can be
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similarly solved subject to matching with (26), after which substitution into expansions (28c)
and then approximating for T > 1 leads to,

{-k e2(A-I)T-(A -1 )}+ K-l~k 2 e 4(A-1)r }
A {-kO e2(A)T _ (A - 1)} + K { 2(A- 1 ) + k(A - 1)T e2(A- ) +/ T + 2a1

+ .. , (30)

B-ke 2(;-)T r lko2 e4 ( A- I)T 

B-~~koe2 (A l)T- ( 2(- 1) + k(A - 1)Te2(A)T + , as K->c- for T>1,
(31)

where the constant k is given in [16]. Via (30, 31) we see that expansions (28c) become
non-uniform as T- log(K)/2(A - 1) and in order to obtain uniform asymptotic expansions
for ac and f,i in the neighbourhood of this point we introduce region IV. The appropriate
scaled variables for region IV are,

a = KA, f 1 = KB, =K1O+ K-' log K + K'T, (32)

and equations (18b, c) become,

dA2
- = -AB + K-2z, (33)
dT

dB
Kl dT= -B{A + B - 2(A - 1)} + K B(A -(A - 1)} + K 2 (tT + 2a,)B

K - 2 log K/zB

+ 2(A - 1) + 2(a2 -a)K 3 +O(K- 4 B) (34)

which are to be solved subject to matching with expansions (28c) in region III as T-- - .
We expand A and B as,

A = A + K-l(log K)A + K-'A2 + K-2(log K)2A 3 + K-2 (log K)A 4 + K-2A5 + o(K2),

(35)

B = Bo + K-'(log K)B + K-1B 2 + K-2 (log K)2 B3 + K-2 (log K)B4 + K 2B + o(K-2),

as K--> o, with T = 0(1), and substitute into equations (33, 34) to obtain 12 equations for Ai
and Bi, i = 0, 1,..., 5. These equations are easily solved, and the leading order solutions
which match with expansions (28c) in region III as T- - are,

- =- 4(A - 1) 2

2(A- 1) + k e2 (A- ' )T 2(A- 1)-

For brevity the solutions at higher order are not presented (see [16]). By substituting these
and higher order solutions into expansions (35) and approximating for T > 1, we find that,
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A 4(A - 1)3 e-2(-l)T + K-l'{log K + 2(A- 1)T}) 2(- 1)2 e 2(A -)

k o ko

-2{ (A - 1)2 e-2 (A-1)T (1 K)2 + 2(A - 1)((A - 1)2 - )T e 2
( log K

ko (log K) +ko log K

2 ( A-I) 

4(A - 1)2 e- 2(A- 1)T { 2(A - 1)2 e-2 (A-l)T
B - 2( ~ - 1) k- KI ko log K

k0 k0

4(A - 1)3T e -2 (A -
1)T

ko
+ A -1}- K2{(Ak 1)2 e- 2(A-l)T(log K) 2

l - ko

+ [ 2(A - 1)((A - 1)2 - )Te- 2( - )

L ko

+ -- , asK---> oowith T>1.

2 (A - 1)logK- T-2a+ 2(AA- 1)}

(37b)

These expansions become non-uniform when T= O(K2 ). Therefore, to complete the
asymptotic solution we introduce region V, where the appropriate scaled variables are
a, = K-'&, 3, = Kf, = KT. After writing equations (18b, c) in terms of these variables we
expand 5 and (3 as,

a = o + K-1', + K-22 + O(K3), 1p = f0 + K-Ifi + K -22 + O(K-3 ) ,

as K--> o, for > To + 2(A 1) K 2 log K.
2( - 1)

(38)

On substituting these expansions into the scaled equations we obtain the solution at each
order immediately and hence find that,

K -( 1 ) K- 2(A- 1) 2

a 2 + + -3 + O(K-3),
T /.aT /L T

(39a)

K - 2 1
6 = IT-K- (A-1)- F + O(K-3), as K-->o, for > +2(A I) K-21log K.

The expansions (39a) match with expansions (35) in region IV as -->o+l/
(2(A - 1))K-2 log K and remain uniform as i---> o. In terms of the original variables, a1, f,i
and T, expansions (39a) show that

1 A-1 (A-1)2

- + 2 + 2 2 +
T At / T

K-1 log K
frr>K°+ 2(A- 1)

1
fI- AT - ( - 1) - 1+- +...-

(39b)

and hence the solution finally takes on the asymptotic form (13b) as T --> o. This completes

(37a)

123
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the asymptotic solution of the initial value problem (18) for A> 1 and K > 1. We can
summarize the behaviour of a,, /3R and y, at leading order as:

(A - 1)
Region I: T = O(K -) , a, A K (A- 1)

A(A - 1) e(A - °
l)

Y ( (A-) 1 , with = K = 0(1),as K---. (40a)

Region II: O(K - ) < < K - O(K '), a, - AT,

(A- 1) e(A_-)K + 
2 y 1 (A -1), as K-o, (40b)

Region III: - KOI = O(K-1 ), a, = 2(A - 1)K + 0(1), 3I = 0(1),

y,= 0(1), as K-->. (40c)

Region IV: - KO 2 (A ) K-1 log K= O(K - 1),

4(A - 1) 2 K k02(A - 1)K e2(A - )T

aI 2(A- 1) + k e2 (-l) ' 2( A - 1) + k e2(- )T '

, = (K-P)Vp>O, with T=K(T-Ko- 2(A ) K1 log K) = 0(1),

as K--->, (40d)

Region V: > K + K-2(A ) 'log K + O(K-1'), aI -1/,

-, - (A - 1), y = o(KP)Vp > O, as K--->oo. (40e)

Region I is a thin initial transient region where /3, becomes exponentially small and y, is
reduced to A- 1. In region II, 3, attains its minimum value, ,3 min, when T = ½KO-
(A- 1)K/A and then increases slowly. The solution (26b) shows that,

3
min (A--) e(A-1)2

K
2

/2g , as K- . (40f)

Meanwhile, a, increases linearly and y remains close to A- 1 until the solution changes
dramatically as ---> r = KFO. In region III, which is a centred, transition region, 3, begins to
increase much more rapidly, whilst the growth of a, is halted and a, and y, start to decrease.
This process continues in region IV, where a, decreases to tA/2(A- 1)K, , increases to
2(A - 1)K, and y, becomes exponentially small, so that the solution takes on the asymptotic
form (13b) in region V.

The solution of the initial value problem (18) which we obtained numerically using a
fourth order Runge-Kutta technique, is shown in Fig. 1(a) for K = 10, A = 2, = 1, and
clearly displays the asymptotic structure described above. In this case the asymptotic theory
predicts that transition occurs when - K() + K - ' log(K)/2(A - 1) = 20.08 ... in region IV,
which is in good agreement with the behaviour of the numerical solution.
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Fig. 1. The solution of the initial value problem (18) for A = 2, /x = 1 and: (a) K = 10, (b) K = 1, 5, 10, 15.
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In Fig. 1(b), the behaviour of the concentration 3, is illustrated for A = 2, A = 1, and a
range of values of K. This shows that clock reaction behaviour occurs, even for moderate
values of K, and becomes more sharply defined as K increases. However, the inner solution
becomes non-uniform as T---> , in particular when = O(e- 1) and matches with the
appropriate outer solution given by (14c) or (16). Clearly, for the asymptotic structure of the
inner solution outlined in (40) to be appropriate we require 1 K < -1 , when the outer
solution is of the form (16). When K= O(E-1 ) it is possible to develop an asymptotic
solution of the full initial value problem (7), valid for 0 < 1, which we expect may also
display clock behaviour. For brevity, the details in this case are not pursued here but
discussed at the end of the paper.

By considering the solution in terms of the physical variables, a, b, c and t we can now
determine the behaviour of the chemical system (17) when 1 K< E-' or, equivalently,
k2bo > kok 2 > kokl. In other words reaction step (17c) typically proceeds much faster than
step (17b), which typically proceeds much faster than step (17a) with this difference in
reaction rates much larger between steps (17a) and (17b) than between steps (17b) and
(17c). After an initial transient period, with duration of 0(1lk 2bo), the concentration of the
clock chemical, B, becomes exponentially small, of O(b, exp(-(co - b)k 2t)), whilst the
concentration of the inhibitor, C, is reduced to co - bo via reaction step (17c). There then
follows a long induction period during which the concentration of the reactant A is given by
a kopot, the concentration of C remains at c - bo and the concentration of B reaches a
minimum of bo(c o - bo ) exp(-(co - bo) 2k/22kkp,)lco, from expansion (40f). The induc-
tion period ends as t-> to, where t 2(c0 - bo)k 21k , kop o , and the concentration of B
rapidly grows to 2(c o - bo)klk2 , whilst the concentration of A falls to kopo/2(co- bo)k 2

and C is effectively completely consumed. We note, that the induction period ends when
k, (a) = k 2 (c). For t> to the concentration of the clock chemical, B, increases due to the
decay of the reactant, P, via the autocatalytic step (17b) and a-> O, b -->po + bo - co, c--O
as t-- -. Finally, we note that the clock reaction behaviour of the system (17) is due to an
inhibition mechanism alone and no induction mechanism exists (see [1]). This is also true of
the reaction scheme (1) in the remaining three cases, which we analyse below.

4. Cubic autocatalysis with quadratic inhibition n = m = 2

In this case, the reaction scheme (1) is, in the inner limit,

P---> A, rate ta, (41a)

A+2B-3B, rate a I, (41b)

2B + C---> D, rate K/5/,3, (41c)

where K= k 2 lkl, t = kopolkbo. We require a solution of the initial value problem,

Yl = (a 1 + Pf - tIr + 2A - 1), (42a)

da 2, d, 2 K2( + 2 )dT1 -"' i I df ajP - Kjj(aj + J6 - ATr + 2A - 1) (42b, c)d d-
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a(0) = , 3,(O) = 1, Y(0) = A, (42d)

and, as for the case n = m = 1, for clock reaction behaviour we require A > and K > 1.
On integrating equation (42c) after making use of (42a) and the initial conditions (42d),

we obtain, , = (1 - ((a ) - 2K( y ) ))-. With K > 1 and A > we expect that the solution
lies close to (13a) after a short initial transient period, so that,

3,- 1- 2 + (2A-1)Kr as K-> , with T = 0(1) . (43)

The approximate form (43) gives an indication of the structure of /3, as K 0,. There is
an initial transient region with = O(K - ) in which 3, = 0(1), followed by an induction
period with 3, = O(K-) and T = 0(1). This induction period ends as ---> KO, where
To0 - 2(2A- 1)/1L as K-> . For - K 0, 3, increases rapidly.

We can construct the detailed asymptotic solution of the initial value problem (42) for
A> and K > 1, which has a very similar structure to the solution of the initial value
problem (18) that we described in detail in the previous section. The leading order solution
again has five asymptotic regions.

Region I: = KT = 0(1), a, = K-1 + (K-) , 3,= 3 + o(1), as K---> , where

/ 3+2A-1)a = L , log\ 2A )- = -(2A- 1)2 - (2A - 1). (44a, b)

We note that, from the solution (44b),

3 (2A - 1): ' as +-- . (45)

Region II: T= K-1
= 0(1), a, = K + o(K), /3, = K-2/3 + o(K-2 ), as K- ,

where

a AT = (2 A- 1)- 2 (46a, b)

Region III: = 2(2A - 1)KIt + KIT, a, = 2(2A - 1)K + A + o(1),

, = B + o(1), asK---,

Here A(T) and B(T) are readily obtained in implicit form and given in [16]. Both develop a
singularity as T---> T (where the constant To is determined by matching with the solution in
region II at higher order) when,

-1 1
A -1 - B 1 a, T- T (47)2(2A - 1)(T o- T) ' 2(2A - 1)(T o - T) 'as T- (

Region IV: = 2(2A - 1)K/la + K'-To + K- 2 T, a, = KA + o(K),

/3 1= KB + o(K), as Ko,

Both A(T) and B(T) are again obtained implicitly in [16]. In particular A and B remain
bounded for all finite T, with



128 J. Billingham and D. J. Needham

20

16

12

0

4

0

a,

71

(a)

(a)

32

28

24

20

q 16

12

8

4

0

T7

(b)

Fig. 2. The solution of the initial value problem (42) for A = 1, /a = I and: (a) K = 10, (b) K = 1, 5, 10, 15.
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A - 2(2A - 1) e- 4(2A- )2(T-To)-1

(48)
B - 2(2A - 1)(1 - e -

4(2A-
2
(TO

)-
1) as T- o

where To is a constant determined by matching with higher order terms in region III. The
generation of further terms in this region (up to O(K-3)) shows that a nonuniformity occurs
when T= O(K3), A= O(K-3 ) and B= 0(1).

Region V: = K-Ir = 0(1), al K-2& + o(K 2), 13 = Kl + o(K), as K--->

where a = 1/, 2 , f3 =/ T, (49a, b)

and the solution has the asymptotic form (13b).
This completes the leading order asymptotic solution of the initial value problem (42) for

A > and K > 1. The qualitative form of the solution is similar to that of the solution for
n = m = 1 which we outlined in §3. Region I is an initial transient region where /3, becomes
of O(K-') and y, is reduced to A - . In region II ,3 attains its minimum value, 3min, when
r = 2 K - (2A - 1)KIt, and,

2/K - 2

/3min (2A )2
, as Ko. (50)

Meanwhile, a, increases linearly and y, remains close to A - until the solution changes
dramatically as r--> = K 0. In the centred, transition region III, 3, begins to increase more
rapidly, whilst the growth of a, is halted and a, and y, start to decrease. This process
continues in the main transition region IV, where a, decreases to /x/4(2A - 1)2K 2, 3(,
increases to (2(2A - 1)K and y, becomes exponentially small. Finally, the solution takes on
the asymptotic form (13b) in region V. This asymptotic solution clearly represents clock
reaction behaviour. The solution of the initial value problem (42) is shown in Fig. 2(a) for
K = 10, A = 1, u = 1. This was obtained numerically and clearly has the asymptotic structure
outlined above. This solution suffers some numerical inaccuracy since da,ldt, and d,ldt,
are of O(K3 ) in region IV, but displays the expected qualitative behaviour. In Fig. 2(b) the
concentration /3, is illustrated for = 1, A = 1 and a range of values of K. Clock reaction
behaviour again occurs, even for moderate values of K, and becomes more sharply defined
as K increases. A close examination of Figs (b) and 2(b) also shows that during the rapid
transition in the neighbourhood of = K 0o, /3, changes more sharply for n = m = 2 than for
n = m = 1. This is as predicted by our asymptotic analysis since dal/dr and d3,/dT are of
O(K3 ) in the transition region for n = m = 2 but only of O(K2 ) for n = m = 1. Finally, we
note that we require 1 K < E- for the above asymptotic structure to be appropriate, as
explained for the case n = m = 1 in §3. Similar considerations apply to the case K = O(E 1)

as described in §3.

5. Quadratic autocatalysis with quadratic inhibition n = 1, m = 2

When n = 1 and m = 2 the reaction scheme (1) is, in the inner limit,

P -->A, rate (51a)
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A+ B-->2B, rate al/31 , (51b)

2B + C-D, rate K/3ty,, (51c)

where K = k2 bolkI and /t = kopolklbo. We require a solution of the initial value problem,

·/ = ( + 3 - -r + 2A - 1), (52a)

da d) 1
aI= 0-MII dT = a,/3I - K2(aI + - + 2A - 1), (52b, c)d, dr

subject to the initial conditions,

a,(O) = 0, Pi(0) = 1, y,(O) = A. (52d)

As in the previous case, we examine the initial value problem (52) when A > ½ and K > 1. On
integrating equation (52c), making use of (52a) and the initial conditions (52d), we obtain,

/3xp =((al 7-) (53a)

1+ 2K y (s) exp((a,)s) ds

In addition, with A > ½ and K > 1, we expect that the solution lies close to (13a) after a short
initial transient period, and hence, via (53a),

el/2tr2

/3i- , as K-->oo with r = 0(1). (53b)

1 + K(2A - 1) T e/2s2 ds

The form of (53b) suggests that there is an initial transient region when = O(K-') and
/, = 0(1), after which 3, = O(K-') when T = 0(1). However, for T > 1 we have, via (53b),

32A- 1' as K--> for T > 1. (53c)

This suggests that the solution does not remain close to the solution (13a) as T-- o, but it is
not clear whether there is a rapid transition to a solution of the asymptotic form (13b).

We can now construct the detailed asymptotic solution of the initial value problem (52) for

A> , K> 1 which shows that, after a short initial transient period, 3, remains of O(K - 1 )
until approaches T0= K 1/3 0O, where 0 = 0(1) as K--> , when the solution undergoes a
rapid transition and takes on the asymptotic form (13b). The leading order solution has
seven asymptotic regions, which are outlined below.

Region I: = K = 0(1), a = K-I( + o(K- ) , 3 = + o(1) as K-, where

=/1U, log( + 2 A - 1) (2A- 1) (2A-1) 2 _-(2A-1) (54a, b)
9 0~~/

with 3 - 1/(2A - 1)F as -- > .



Chemical clock reactions II

Region 11: r = 0(1), a, = a + o(1), = K-I + o(K-'1), as K- > , where

(55a, b)a = tat , =
(2A - 1) fo e2JT 2 ds

We also note that,

/ a -1 asT- o,(2) - ) '
(55c)

which is the asymptotic behaviour predicted by (53b) in (53c). In order to determine the
structure of the next asymptotic region it is necessary to obtain the next term in the
expansion for B3. We find that, up to O(K-'),

/ AT__ K-- y32 ' as K --->with r> 1 ,
(2 - 1) 3(2 - 1)2 (55d)

and therefore a further non-uniformity arises when r = O(K1"3).

Region III: = K- 13 r = 0(1), al = K1 /3c0 o f il + 0(1),

[A = K-2 3 3 + o(K-2 13 ) , as K- X,

where

al = ((2A` - 1)2 - 2 -(2)1/2 _ (2A - 1), - 3)/
((2-1 - 2 ta2 3)1/2 ·

Region IV: T = K 1/3 0 + T, a, = K/3tO + A 0 + K 1 6A + o(K - / 6 )

= K-1/2B + o(K - 1 12 ), as K->c,

where

TO = (3(2A - 1)2/2a2)/ 3 ,

and

Al = {22a2(To -T) I/2 LT0B= 2 2 (T 1 1

12OA-2(To- T)} "j 
A, = auT- (2)`- 1).

(58a, b, c)

Here the constant TO is determined by matching with the solution in region III at higher
order.

Region V: - = Kl /3 o + TO+ K-13T ,

a, = K 1 /3aF0O + ( To - (2A -1)) + K-1/3A + o(K /3) ,

,3 = K-" 3 B , as K -c.

(56a, b)

(57)
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Here A(T) nd B(T) are obtained implicitly in [16], where it is shown that, A and B are
bounded for all finite T. As T--> oo we have,

A . T- (Fo) 1/ 2 exp(t tC T- (/ ) 2 + ), (59)

B (Xtko)12 exp( IxT - (T0) 2 + ) , (60)

where the constant c is determined by higher order matching to region IV.

Region VI: = K" + T + K 3 log K + K-31'3, a, = K1 /3A + o(K3),

3 = K 3 + o(K13 ), as K->oo,

where

A= (tL.) 3 /2 e =ToT B = , (61a, b)
k + )12 + (o) e ' + ( ) 1/2 e '

with ko = exp(2 - (/ o) -2).

Region VII: = K 1/3_ = O(1), a = K-1/3& + (K 113)

1 = K1/31 + o(K1/ 3 ), as K- ,

where 0 = - /3, 0 = 32(f3 - / F), and matching with the solution in region VI as
-- F + K- 13To + 2/(3X.5)K - 2/3 log K leads to f3- -->o as -- . The concentration i
matches with higher order terms in region VI. Clearly, the appropriate solution of these
equations is a = 1/, /3 = p1, and the solution has the asymptotic form (13b).

This completes the leading order asymptotic solution of the initial value problem (52) for
A> 2 and K > 1. Although this solution develops over two more asymptotic regions than in
the previous two cases, its qualitative form is very similar. Region I is again a thin initial
transient region where 3, becomes of O(K -1 ) and y, decreases to A - . In region II, /3,
attains its minimum value, 3

min,, when r = Tmin, where from (55a, b)

-112 K- 1 1/20
Tmin L / min 2A -1 as K- oo, (62a)

and is the unique positive solution of the equation,

e 1 /2 0 2 _ 0 fo e1/2 s2 ds = 0. (62b)

We evaluated 0 numerically as 0 = 1.31, and note that, in this case, Tmin = 0(1) is not the
midpoint of the induction period 0 r K'/3O, as K- - . The concentration a, increases
linearly and y, remains close to A- . In region III /3, is of O(K - 2'3) and continues to
increase slowly, whilst a, and y behave as in region II, until ---> K /3 o when the form of the
solution changes dramatically. Regions IV and V are thin, centred regions where /3, increases
more rapidly to become of O(K-/3), a, remains large of O(K' /3 ) and y, becomes of
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O(K- 11 6 ). Region VI is the main transition region where a, decreases to K 1 /3
ol, 1

increases to K /3 I and y, becomes exponentially small. Finally, the solution takes on the
asymptotic form (13b) in region VII. This asymptotic solution clearly represents clock
reaction behaviour. We note that in this case the rapid transition occurs when

7 = 0m K1 13 (3(2A - 1)2/2/. 2 )113 whereas for n = m = 1 or n = m = 2, TO = O(K) as K-, ,

and hence the induction period is much shorter in this case. A numerical solution of the
initial value problem (52) is illustrated in Fig. 3(a) for K = 1000, A = 1, . = 1. In this case
K /3 0 11.5, via (57), and the numerical solution is in good agreement with the asymptotic
solution described above. Figure 3(b) shows the concentration ,3 for A = 1, = 1 and
various values of K. Clock reaction behaviour now occurs for moderate values of K'/3

(though much larger values of K) and becomes more sharply defined as K increases with
dca/dT and d3 1/dT of O(K2 /3 ) in the transition region. Finally, we note that we require
1 < K E-3 in this case for the asymptotic solution which we described above to be
appropriate.

6. Cubic autocatalysis with linear inhibition, n = 2, m = 1

When n = 2 and m = 1 the reaction scheme (1) becomes, in the inner limit,

P---> A, rate p., (63a)

A+ 2B-->3B, rate af,3, (63b)

B + C--- D , rate K3,, , (63c)

where K = k 21klb o and = kplo/kb. We require a solution of the initial value problem

y = a, + /3 - r + A - 1, (64a)

da, 2 dp/3 2 (64b, c)
d - - 3 , d - a,13 - Kt(a, + 13 - L + - 1),

with initial conditions,

a,(O) = , 3,(O) = 1, (0) = A. (64d)

We can integrate equation (64c) once, making use of (64a) and the initial conditions (64d)
to obtain,

exp(-K(y,)Tr)
fi (65a)

1- f a,(s) exp(-K(y)s) ds

For A > 1 and K > 1 we again expect that the solution will lie close to (13a) after a short
initial transient period. Under these conditions, (65a) leads to,
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e-K(A-1)T

1 - fs e-K(A- l )s ds

K---> with T= 0(1).

This suggests that the solution is asymptotic to (13a) as ---> - for A > 1 and K sufficiently
large. The full asymptotic solution of the initial value problems (64) for K>1, A> 1, the
details of which are omitted here, shows that a, - A, PIT- 0, Y - (A - 1) as T--> . Thus, in
this case, clock reaction behaviour is not possible for K> 1, A> 1. However, numerical
solutions of the initial value problem (64) for A > 1 lead us to make the following conjecture.

C6.1: If (at, 3, y,) is the solution of the initial value problem (64) with A > 1 and ti > 0,
there exists a positive constant K* such that,

y,-->0, as T--->, for K< K* ,
(66)

a - 7, PI --->0, y, - (A - 1), as Tr-c-, for K>K*.

In addition, we find that for 0 < K* - K - 1, the solution displays clock reaction behaviour,
with a rapid transition from a solution which lies close to (13a) to a solution with the
asymptotic form (13b). This transition occurs in the neighbourhood of the point = To,

where T0--->o as K-> K*-. We note also that our numerical solutions of the initial value
problem (18), (42) and (52) strongly suggest that C6.1 holds in each of these cases. The
asymptotic solutions for K > 1 which we developed in the preceding sections then show that
if C6.1 holds, K* = -o. The numerical solution of the initial value problem (64) with A = 2,
tz = 1 and K = 0.81 is shown in Fig. 4(a). We note that the initial transient region, where the
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Fig. 4. (a) The solution of the initial value problem (64) for A = 2, Ix = 1 and K = 0.81. (b) The functions P/3m(K)
and Tmn(K) for A = 2, /x = 1. (c) The solution of the initial value problem (64) for A = 2, gI = 1 and K = 0.5, 0.75,
0.81, 0.815, 0.8156.
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ai --> 0, A - /I - A - 1) ,
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concentration , becomes small, has duration of 0(1) in this case. The concentration 3, also
has a local maximum just after the transition point at = 10.9 .... This is caused by the
reaction step (63c) which proceeds at an 0(1) rate and limits the growth of f,3 until y
becomes small. For A = 2 and pa = 1 we find that K* = 0.8157 .... Figure 4(b) shows graphs
of the functions ,3min(K) and Tmin(K) for p/ = 1, A = 2, where the minimum value of 3,B is 3

min

and Ii(Tmin)= min . Clearly, Tmin---> and 3min 0 as K->K*, and for K>K*, , is
monotone decreasing so that 3

min -- 0 and in -- . Figure 4(c) shows the behaviour of the
concentration 3, for p. = 1, A = 2 and various values of K < K*. This demonstrates that clock
reaction behaviour develops and becomes more sharply defined as K--> K*-. In order to
determine K*(A, fL) for various values of A> 1 and > 0, we use a bisection search
technique, with the search criteria, if d/,/dT > 0, then K < K*, and if ,3 < 0, then K > K*,
with 30 = 10-8. Graphs of K*(A, 1i) for various fixed values of A and Az are shown in Figs 5(a)
and (b), respectively. These indicate that K* -->0 as A -->0 with K* --> as . --->* , whilst
K*->* as A->1 + and K*--0 as A-->oo. All of this numerical evidence supports C6.1. In
addition, we can investigate C6.1 analytically in the special case, 0< A- 1 1 where our
numerical results have shown that K* > 1.

In order to develop an asymptotic solution of the initial value problem (64) when
0 < A - 1 1 and K > 1, we let A - 1 = f(K), where f(K) = o(1) as K--> o. We now wish to
examine this solution for KIK*(A, .) = 0(1) as K-> . After a little trial and error we
arrive at the substitution,

A - 1 =f(K) = K 2(k1 l(/) log K + k 2(p.)) (67)

where k1 - 0. It will become apparent during the course of the following analysis that this is
the appropriate choice for f(K). Using (67) the initial value problem (64) becomes,

y,= a, + 3 - I + klK - 2 log K + k2K 2, (68a)

daT = _a a , , (68b)

d = a, /3 - K13,(a, + /3 - par) - K - l log Kk 13 - K -k 2 3 1 , (68c)

subject to initial conditions,

a,(0) = 0, 3(0) = 1, (O)) = + klK - 2 log K + k 2K - 2 . (68d)

We require a solution of this initial value problem for K > 1. Appropriate scaled variables
for region I are, & = K, = KT, /3,, in terms of which equations (68b, c) and initial
conditions (68d) become,

d= p - K-a31 , (69a)

d/3t -2( -2(
dq -f / - K-13f(3 -/A)- K-2 (log K)klf3 1 + K-2( 3 - k2131), (69b)

(69c)&(O) = 0 PA~o) =1 
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We expand et and , as,

= + K-', + o(K -2 ), /3 = o + K-13, + K - 2 log K32 + K-23 + o(K-2) ,
(69d)

as K- o, with F = 0(1). After substituting these expansions into equations (69a, b) and
equating coefficients we can readily solve the resulting equations for &o, i,, /3, /3,, /32 and 33
to obtain,

a = K{ 1 + log(1 + ) + o(K -),

/3 1 + K2[4p.
= 1 + + K 2 log(l1 + r) + ( k, log K + k2 + .) ( - + )2o(K )

(70a, b)

as K- o, with 0 = 0(1). These expansions become non-uniform as >aoo, in particular
when ~ = O(K2 (log K)- 1), = O(K2 (log K)-') and , = O(K- 2 log K). In order to de-

velop uniform asymptotic expansions for a, and 3, as -- we introduce region II where
appropriate scaled variables are,

a = (K 1 log K)al, /3 = K2 (log K)-'/3,, T= (K ' log K)T-, (71a)

in terms of which equations (68b, c) become,

d?d p - K 3 (log K)@32 , 

d _P2 - k 1 f + (log K)-'(ap2 - k2g) - K 3 (log K) 2 P(a - /.T), (71c)

which are to be solved subject to matching with the solution (70) in region I as --> 0. We

expand a and /3 as,

a = 0 + K-3 (log K)2 a1 + K-3 (log K)( 2 + o(K-3),
(72)

/3 = 30
+ (log K)-l,3 1+ O(K-t), as K oo with = 0(1).

Matching with the solution (71) in region I as --> 0 leads to,

50o -zT, a - -2, 52 - log(log K) +/ - . log T,

~~~~~~~~~~~~1 ~~~(73)
- T + - k 1 ,, p 1 - - 1log(log K)- k 2 - + 1 log , as -0 .

After substituting expansions (72) into equations (71b, c) and solving the resulting equations
for a0, a,, r2, /30 and /3, we obtain the solutions which satisfy the matching conditions (73)
as,
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O = /2 / 0 = { (2/ 2 - kl)(1 e-( )- ; kl 2/ , (74a, b)
ao = -t1/ ; k, = 2/2,

together with similar expressions for a, a 2, a/, which, for brevity, are not given here (but
may be found in [16]). By substituting these solutions into expansions (72) and approximat-
ing for > 1, we find that,

<a - C - 2/2K-3(log K)2 - 12(2/ - k 1)
2 i2 K-3 log K + · ·.} k < 2/, (75a) 

3 - (2/2 - kl) + 2u(2u - k,)3
T
2 (log K) - ' + k' 

a -2 - 2/2K-3 (log K)2 + {p2 + log(log K) - log 3 K + · · ; k = 2

- {½ -2 log(log K) k+ l k2 + - 2 _ log }(log K) - + (75b)

a T - 2/.K-3(log K)2 + K- 3 log K + ... 

; k > 2 /,, (75c)
a - (k, - 2u) e(2 - k ) _ (k, - 2)( c + k 2)T e(2- k 1)(log K ) + ...

as K-- x with r > 1, where

= + / log(log K) - /( 2 /p - k) (1- - )2 ds

7 s ds
- /2( 2 / - ke )2 (1 (75d)

There are three cases to consider.

(a) k, > 2p/
For k > 2/2, expression (75c) shows that /3 -0 as T- o and the solution is asymptotic to
(13a). Although a further weak non-uniformity arises when = O(log K), /3, remains
exponentially small and a, - /rT as i---> . Thus, in this case, no clock reaction behaviour
arises and the production of the clock chemical, B, is completely inhibited by C.

(b) k, < 2,
For k, <2p., approximations (75a) become non-uniform as - , in particular when
T= O((log K)" 2 ), a = O((log K)" 2 ), = 0(1). To obtain uniform asymptotic expansions
valid when -= O((log K)'/2 ) we introduce region III, where appropriate scaled variables
are, A = K- '(log K)/ 2a, B = K2 (log K)',3, t= K '(log K) /2. After writing equations
(68b, c) in terms of these variables, we expand A and B as,

A = A + K- 3 (log K)3 / 2A, + O(K 3 log K), B = + O((log K) /2 ), (76)

as K--* with T = 0(1). After substituting expansions (76) into the scaled equations and
solving the resulting equations for AO, Al and B, subject to the matching with (84a) as
T o0, we obtain,
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k - 2 k I - 2g
A =A.T, A= (k-k , Bo l( k_2 . (77a, b,c)

1 + A/(k, - 2pt) 1'

Expansions (76) become non-uniform as T-_ To = (2/ I(2/ - k1)) I 2 . Clearly, B increases
rapidly in the neighbourhood of the point = o0, which shows that the solution displays
clock reaction behaviour. Further asymptotic regions are required to complete the solution
for k1 < 2, and the details are not pursued any further in the present paper. We have shown
that clock reaction behaviour occurs for k I < 2 but not for k, > 2/x and we now consider
the case k = 2,/.

(c) k = 2L
When kI = 2 p, expansions (75b) show that region II is entirely passive and simply transmits
the asymptotic form of the solution in region I given by the matching conditions (73).
However, expansion (75b) becomes non-uniform as ---* , in particular when F = O(log K),
a = O(log K) and / = O((log K)-l). In order to deal with this non-uniformity we introduce
region III where appropriate scaled variables are, A = K a1 , B = K,3, T= K-1 r, in terms
of which equations (68b, c) become,

dA 2
dT= ,-K-3AB , (78a)

dB 2 2d T = AB 2 -_ B2 - k2 B - K3B(A - T + K 3(log K)2p), (78b)

which are to be solved subject to matching with the expansions (75b) in region II as T---> 0.
We expand A and B as,

A = Ao + K- 3 (log K)A 1 + K-3A2 + o(K- 3), B = Bo + o(1), (78c)

as K---> , with T = 0(1), and matching with (75b) as T-- 0 requires,

Ao -- P T, A, - -2L , A 2 -p - log T, Bo- + A log T-k 2-, - (78d)

as T---> 0. After substituting expansions (78c) into equations (78a, b) and solving the resulting
equations for A, and A 1 we obtain, Ao = L T, A, = -2,u. The equations for A 2 and Bo are
then,

dA 2 2TB dB0 TB 2 2

d = dTB dT 0 TB - B k2B o - A2B . (79a, b)dT dT

In order to scale the parameter u out of the problem we make the change of variable,
T= p.T, t/Bo = Bo, /CA2 = A2 , Ctk 2 = k2 , so that the system (79a, b) becomes,

dA 2 ~ dBo 2
d T = - TB - BO-k2B -A 2 B, (80a, b)
dT dT

and we seek a solution subject to the matching conditions,

A 2 -log T +1-log ,u, Bo T + 2 log T- tk 2 -2 + log , as T--0. (80c)
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Numerical solutions of the system of equations (80a, b) subject to initial conditions (80c)
show that there exists a constant k2 , such that

Bo-- o, A 2 --, as T--> T, fork 2
< k2 ,

(81)
Bo---> 0, A 2 --->constant, as T-co, for k 2 > k 2 ,

where To is a positive function of k2, with To- --> as k 2 - k2-. However, we are unable to
obtain an accurate value for k. We took as our initial conditions, A 2 = -log T1 , B0 =
1/1T + log T1 , with 0 < T1 < 1, but an initial value of A2 sufficiently large to determine k
accurately leads to such a large initial value of B0 that accurate numerical integration using a
simple Runge-Kutta technique is not possible. The exact value of the constant k2 remains to
be determined.

We have now shown that when k = 2, and k > -Oand Ak2 - 2K 3 log K
as T-- 0, and hence the solution is asymptotic to (13a). Therefore, clock reaction behaviour
does not arise and the production of the clock chemical, B, is completely inhibited by C.
However, when k = 2 and k 2 < k2*A,~ B and A become unbounded as T-> T0, which
shows that clock reaction behaviour arises in this case. Further asymptotic regions are
required to complete the solution, the details of which are not pursued in the present paper.

Our analysis of the initial value problem (64) has shown that,

*[( A )log( A + 2 ] , as A (82)
+

where K* is defined by (66) in C6.1. Expression (82) also indicates that K* = O(L1/ 2) for
/z > 1 and 0 < A - 1 1, consistent with the graphs of K* shown in Fig. 5(a). Finally, we note
that we require r0 < e-l for the asymptotic solution described above to be appropriate,
where

T0 = K(log K)-1 1 2(2/t(21 - k 1))
1 12 , for A - 1- klK- 2 log K as K-oo. (83)

Solutions of the initial value problem (64) behave very differently to solutions of (18),
(42) and (52), which we examined earlier. By the same token, the reaction scheme (63)
behaves very differently to the schemes (17), (41) and (51). For K sufficiently large the
production of the clock chemical, B, is completely inhibited by C via the reaction step (63c),
which proceeds much more rapidly than the step (63b) when 3, is small. However, for K
sufficiently close to a threshold value, K* with K < K*, clock reaction behaviour arises and
the concentration of B grows rapidly in the neighbourhood of the point r = T,m where --To 

as K--> K*-.

7. Comparison of the four reaction schemes

Firstly, we consider the cases of quadratic autocatalysis with linear inhibition and cubic
autocatalysis with quadratic inhibition. These two reaction schemes lead to very similar
behaviour and the main points are summarised in Table 1. We have shown that clock
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Table 1. Various properties of the solution of the initial value problem (12) for K 1

Quadratic autocatalysis Cubic autocatalysis Quadratic autocatalysis
with linear inhibition, with quadratic with quadratic
n = m inhibition, n = m = 2 inhibition, n = 1, m = 2

K k2 /k, k2lk, k2bo/k1

2(A - 1)K 2(2A - 1)K + O(K-l)2 1
( 

TO A0~~~ + O(K-') A ~~+ O(K-1))K/3 + 0(1)

(mn- 1) exp (A-1) 2 K + o(K ) (2K 1)2 + o(K 2 ) 2 K' + o(K ')A ex 2A (2A )- 2 (2A - 1)

The behaviour (A - 1) K
- ' K 2 3 

of 63 as T O A e (2A - 1)(TO - T) 2(T - 7)

a, and /3, in the O(K2) o(K 3) O(K 2/3 )
neighbourhood
of T = T0

reaction behaviour occurs for sufficiently large values of K= k2lk1 (when c> b0 ); a
condition which is independent of the initial concentration of clock chemical, B. For K > 1,
/3 grows rapidly as ---> T = O(K). These similarities arise because reaction steps (lb) and
(lc) proceed at a rate which is of the same order of magnitude, O(/3"), for/3 1, in each
case. The main difference in the behaviour of the concentration /3 between the two cases is
that /3 becomes exponentially small during the induction period 0 < r < r0 for n = m = 1, but
only algebraically small for n = m = 2. In addition, a and /3, are of O(K2 ) in the
neighbourhood of = ro for n = m = 1, but larger, of O(K3 ), for n = m = 2.

We now turn our attention to the case of quadratic autocatalysis with quadratic inhibition.
The behaviour of this reaction scheme is significantly different to that of the two schemes
described above, as outlined in Table 1. Clock reaction behaviour occurs for sufficiently
large values of K = k 2bolk1, so that this type of behaviour is now possible for a sufficiently
large initial concentration, b, of B if the initial concentration, c, of C satisfies, co > b0.
However, for similar values of K, the clock reaction behaviour for n = m = 1 or n = m = 2 is
much more marked than for n = 1, m = 2, when To = o(K/ 3 ), fmin = O(K-') and the
maximum rate of increase of /3 is slower of O(K2 /3 ) as r-- 0. Finally, the case of cubic
autocatalysis with linear inhibition is dramatically different to all of the other three schemes
which we have studied in this section. For K > 1, or equivalently, k2 > k bo, the production
of the clock chemical, B is completely inhibited. For b0 sufficiently small there is, therefore,
no possibility of clock reaction behaviour. However, for c o > b there exists a positive
constant, K*, such that the production of B is not completely inhibited for K < K*, and
sharply defined clock reaction behaviour is possible for (K* - K) sufficiently small and
positive.

In terms of the chemical systems (1), clock reaction behaviour is less likely to be observed
in the two cases where n m than when n = m. When n 1, m = 2, large initial concen-
trations of B and C are required to produce sharp clock reaction behaviour, whilst for n = 2,
m = 1, this type of behaviour only occurs for a very narrow range of initial concentrations of
B and C. Finally, we tentatively make the following conjecture, which concerns the
asymptotic behaviour of solutions of the full initial value problem (7).
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C7. 1: If (a, /, y) is a solution of the full initial value problem (7), with A > 1/m and /x > 0,
there exists a positive value K*(E) such that,

a-0, /- P - (mA - 1), y---> 0 as r oo, for K<K*, (84a)

c-1
a-P o - c, /3-->0, y-A+ - as r->, for K> K*, (84b)

and

K* = O(E - ), ase--0; m=n=1 or m=n=2

K* = O(E- 3 ), as E-0; n=1, m=2, (85)

K* = 0(1), as E--->0; n=2, m=1.

Our numerical and asymptotic analysis of the initial value problem (64) strongly suggests
that C7.1 holds for the case n = 2, m = 1. For the case m = n = 1, when K > E- ' the
concentration of the precursor, P, is exponentially small (and hence effectively no reactant,
A, is supplied to the reaction mixture) at the transition time = r, = O(K) as K- , given
by our analysis of the inner problem (18). This indicates that no sudden increase in /3 can
occur and /3 -> 0 as r --> o. We conclude that a transition between the two possible types of
asymptotic behaviour (84a, b) occurs at some finite value, K*, of K as K increases, with
K*= O(E- ') as e->0. This conjecture can be investigated by considering the asymptotic
solution of the initial value problem (7) with n = m = 1 and K = O(E- ') as -> 0, the details
of which are not pursued in the present paper. A similar argument in each of the cases
n = m = 2 and n = 1, m =2 leads us to conjecture C7.1 which has yet to be examined.
Finally, we note that our analysis indicates that the complete inhibition of the production of
the clock chemical, B, for sufficiently large values of K is due to the interaction of the two
reaction steps (lb) and (c) for n = 2, m = 1, whereas, in the other three cases, it is due to
the total consumption of the precursor, P, via the reaction step (la).

8. Conclusion

In this paper we have studied the four model reaction schemes given by (1) with n = 1, 2 and
m = 1, 2. We found that it is possible for the scheme to display very sharply defined clock
reaction behaviour, with the concentration of the clock chemical, B, growing much more
rapidly than in the slightly simpler, canonical schemes studied in [1]. These schemes are
examples of induction and inhibition mechanisms, whilst scheme (1) can be referred to as an
inhibited autocatalytic mechanism. The clock reaction behaviour exhibited by this inhibited
autocatalysis arises because of a subtle, non-linear interaction between steps (lb) and (c).
This behaviour cannot readily be deduced simply from the nature of the reaction pathways,
even though there are only three simple steps in scheme (1). Moreover, the nature of the
clock reaction behaviour is dependent on n and m, the orders of the autocatalytic and
inhibiting steps (lb) and (c) respectively, in a far from obvious manner.

Inhibited autocatalysis can be added to the list of possible mechanisms postulated to
explain clock reaction behaviour, presenting itself as a likely candidate when the growth of
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the concentration of the clock chemical is particularly rapid compared to some typical
timescale for the reaction. As an example, a recent paper by Bachmann et al. [17], describes
experiments involving an autocatalytic system and gives a graph of the time dependence of
the concentration of one of the important chemical species. This bears a striking resemblance
to the concentration, f3, in Fig. 1, and suggests that an inhibited autocatalytic mechanism
may play some role in the reaction. Conversely, it should be possible to create an inhibited
autocatalytic mechanism by adding a suitable inhibitor to a known autocatalytic reaction, for
example the iodate-arsenous acid reaction as described in §1. A similar approach has been
taken to the creation of oscillatory reactions (for example [18]).
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